**WHY CONCEPTS OF MATTER ARE IRRECONCILABLE
WITH LIGHT**

*Einstein assumed that the concepts and conventions of matter and the
material concepts of relativity could be applied to the velocity of light. He even used strained logic in a failed
attempt to rationalize their compatibility.
However, such application only contributed to Einstein’s confusion
concerning the velocity of light and helped to cause the ‘difficulties’ that he
imagined. In the end, it becomes obvious
that material bodies and rays of light are such different phenomena, that any
convention of matter and any version of Galileo’s Relativity are irrelevant to
light. The two concepts
(matter/relativity and the velocity of light) are not compatible and can never
be reconciled.*

The short answer is no. First of all, the phenomena of material
bodies and their motions are completely different from the phenomena of light
and its constant transmission velocity of *c*. Material bodies have mass, whereas light
photons theoretically have no mass.
(Griffiths, p. 513) Rigid bodies
are composed of atoms, which form ponderable matter, whereas light is composed
of waves and/or massless particles of radiation (photons). Wave trains of light particles are not really
three dimensional, whereas ponderable material objects are.

Light, being non-material, has nothing to do with the material phenomena
of inertia, lateral inertia and inertial motion.[1]
The concepts of lateral inertial motion and inertial frames of reference only
apply to material bodies. For example,
light always propagates through __any__ reference frame (with inertial,
accelerated, arbitrary, orbital or any other motion) in exactly the same manner
(rectilinearly and at the same transmission velocity). (see Figures 23.1 and 24.1) Also, unlike inertial frames, light is never
relatively at rest; in fact, any form of rest is strictly a material
concept. Nor does light provide inertial
resistance to a force attempting to change its constant state of motion
(transmission). Light does not adopt the
same common inertial motion or lateral uniform velocity as its material
source. In fact, ‘motion’ in any form is
also only a material concept.

Light has nothing to do with material reference frames, inertial,
accelerated, arbitrary or otherwise. (Figures 23.1 and 24.2) Reference frames were *a priori* created
only to describe, locate, measure and relate the relative positions and motions
of material rigid bodies in space.
(Einstein, *Relativity*, pp. 6 – 11; Chapter 13) This cannot be done with non-material
light. Where is light’s point of
emission in space? Unlike material bodies
and their motions, we can never know.
(Chapter 22B) If reference frames
are irrelevant to light, it follows that transformation equations (of any kind)
between reference frames are also irrelevant to light. Similarly, the constant transmission velocity
of light at *c* has nothing to do with forces, accelerations, masses,
resistance, the momentum of material objects (mv), nor the motions of material
objects in such inertial frames. All of
the above phenomena of material bodies are __irrelevant__ to electromagnetic
waves propagating through space and the constant transmission velocity of light
at *c*.

Also, unlike the constant transmission velocity of light at *c*, the
laws of material bodies and mechanics (i.e. mass, force, acceleration,
resistance, momentum, etc.) do not include an instantaneous, built-in and
inherent specific constant velocity. The
velocities of all material bodies depend upon the above laws of mechanics and
other material variables, such as gravity and curved trajectories, and normally
such velocities of matter are very different from one another.[2] On the other hand, the phenomenon of light
does include an inherent built-in, specific, constant, and instantaneous
velocity. The constant transmission
velocity of light at *c* through empty space is an __inherent property__
of the phenomenon of light *en vacuo*, and as such it is always the same
and never changes.[3]

Thus, it was a substantial false premise for Einstein to automatically
assume and conjecture that a propagating ray of light and a moving material
body should be treated as __equivalents__, and that Galileo’s Relativity in
any form should apply to and govern both phenomena. His attempted analogy of such equivalence,
vis., that “the ray of light plays the part of the man walking along relatively
to the carriage” (Einstein, *Relativity*, p. 22), was invalid on its face
for many reasons. (see Chapter 19) The two scenarios, a walking material man and
a propagating ray of light, exemplify extraordinarily different phenomena. There are material relationships between the
man and the carriage, such as mass, force, friction (resistance), acceleration,
inertia, common velocity, material momentum, and motions of material
objects. However, there is __no
material relationship__ whatsoever between the light ray and the
carriage. The only thing similar about
the walking man (a uniformly moving material system) and the tip of a
propagating light ray is that they are both uniformly changing their relative
positions at a constant rate, albeit at very different speeds.

As a further example of such
non-equivalence, the front of the carriage is physically stationary relative to
the walking man, so that the constant velocity of the man relative to it is
always ‘w.’ No matter how fast the
carriage is moving relative to the embankment, the constantly walking man would
*a priori* always reach the front of the carriage at velocity ‘w’ in the
same interval of time. (Figure 19.1A) On the other hand, the front of the carriage
is not physically stationary relative to the non-material light ray
transmitting at *c*, so the constant transmission velocity of the tip of
the light ray __relative to it__ is __always__ *c* – v. If the carriage could somehow also be
inertially moving at *c*, then the light ray propagating at *c* – *c*
relative to the front of the carriage would never reach it during any interval
of time. (Figure 19.1B)

When material bodies are accelerated, their accelerated motions are
compared in different inertial reference frames with different relative
velocities, and the invariant laws of mechanics will always work algebraically
in the same way (covariantly) on each body.
But the different __constant velocities__ of each different inertial
frame, and any ‘Galilean addition of velocities’ in order to describe relative __positions__
(vt) of such frames, are __irrelevant__ to how the laws of mechanics
algebraically work in such equivalent inertial frames. (Chapter 14)
On the other hand, the inherent property of the constant transmission
velocity of light at *c* is never irrelevant to the phenomenon of light,
nor to how light propagates through space or relative to linearly moving
material bodies.

The Cartesian
coordinate systems for material bodies are also irrelevant to the velocity of
light. Measuring the velocity of a ray
of light on a Cartesian coordinate system was purely a __fiction__. No one has actually physically accomplished
this impossible feat. The only part of a
light ray that could even theoretically be placed on coordinates would be the
front tip of the light ray. How, where,
and on which coordinates would one plot such tip if one could see it? Where is such tip’s point of emission in
space from which to describe or measure it?
It must always remain uncertain.
(Chapter 22B) If one were
attempting to translate the point of such tip to a distant coordinate system it
would, of course, be located on a corresponding single coordinate. What purpose would this serve? The distant observer could not even perceive
the light ray or attempt to plot it or measure it until it arrived. This translational plotting could not even tell
such observer the light ray’s velocity propagating through that frame. Such observer could only __infer__ that
when the tip of such light ray got there that it had propagated an arbitrary distance
of *c*t ± vt during an arbitrary time interval.[4]

For all of the above reasons, these two very different phenomena—an
inertially moving material body and a light ray constantly transmitting at
velocity *c*—are not equivalent, compatible nor even reconcilable. There is no correlation, commonality, nor
compatibility between them, whatsoever, except that they both exhibit uniform
rectilinear velocities.

B. Should
Galileo’s material concept of relativity be applied to the constant velocity of
light?

Again, the short answer is no. First, the critical criteria for Galileo’s
Relativity in any form are __all missing__ when it is applied to the
phenomena of light and its velocity *c*.
Light is obviously not an inertially moving body upon which to apply __sense__
the uniform motion of any inertially moving body as being equivalent. Nor is light (uniformly transmitting at *c*)
an application of __no force__ is being applied to light and light does __not
accelerate__ relative to an inertially moving frame. Without some form of applied force and
resulting acceleration relative to equivalent inertial motions, the fundamental
criteria for Galileo’s Relativity in any form are totally missing.

Second, the constant uniform transmission velocity of light at *c*
is also totally irreconcilable and incompatible with Galileo’s Relativity because
Galileo’s Relativity only empirically dealt with __mechanical__ covariance
and invariance. By definition light *en vacuo* is a constant and invariant
quantity, and invariant quantities by definition cannot be algebraically
transformed or changed in the same sense as variable quantities in __constant__ transmission
velocity of light at *c* relative to its medium of ether (empty space) was
both an __inherent property__ of light as well as an __invariant quantity__
that could neither change at any time nor in any different reference
frame. In other words, by definition
both the __law__ and the __magnitude__ of the transmission velocity of
light at *c* are invariant; they do not vary, period.

If velocity *c* is empirically and by definition constant and
invariant, this means that its constant magnitude cannot meaningfully be
algebraically transformed or translated from one inertial reference frame to
another, in the same sense as mechanical covariance. If a translation is attempted the
mathematical result will be *c* ± v (a
relative velocity). Only __variable__
or mechanically __covariant __quantities, such as force and acceleration,
can meaningfully be algebraically transformed or changed from one inertial
reference frame to another, in order to demonstrate that the law that applies
to them (*c* is already invariant, but Galileo’s
Relativity cannot demonstrate this invariance.
So what relevance does Galileo’s Relativity have for an invariant light ray
at velocity *c*? None.

This conclusion was also true for the two different inertial velocities
of the co-moving material reference frames in Galileo’s Relativity (i.e. the
uniformly moving Earth at velocity v_{1} and the uniformly moving ship
at velocity v_{2}). Because the magnitudes
of their velocities were empirically inertial, uniform and constant, such inertial
velocities could not meaningfully be algebraically transformed or changed by a
Galilean transformation (translation) equation (or any other transformation
equation) from one inertial reference frame to another. (Chapter 14)
If this one-to-one translational transformation was attempted the
mathematical result would be v_{1} ± v_{2} = v_{3} (a
relative velocity), which would be totally irrelevant and meaningless to
Galileo’s Relativity. For similar
reasons, the Galilean transformation equations were also __irrelevant__ and
meaningless with respect to such constant and invariant inertial velocities.[5]

Likewise, the Galilean ‘translation’ equations were also __irrelevant__
to the constant and invariant transmission velocity of a light ray at *c*. They were not only irrelevant, but it was
physically and conceptually impossible for any such translation equations to
algebraically turn the constant, empirical and __invariant__ magnitude of
the transmission velocity of light at *c* into a different (mechanically
covariant) quantity. Again, this
irrelevant misapplication by Einstein of the Galilean translation equations to
the empirical and invariant quantity of *c* only resulted in
mathematically producing __relative__ propagation velocities of the light
ray (i.e. *c* – v and *c* +v) vis-ŕ-vis material objects linearly
moving at velocity v in different directions.
(Chapter 14) Such relative
propagation velocities for light could satisfy no purpose within the meaning of
Galileo’s Relativity. They were
irrelevant and meaningless to Galileo’s Relativity. However, they did serve to confuse Einstein
and the scientific community.

Nor was there any reason for Einstein to __supplant__ such irrelevant
Galilean translation equations with the equally irrelevant Lorentz
transformation equations, in order to mathematically eliminate such very
natural relative propagation velocities (*c* ± v) of a light ray. The Lorentz transformation equations are just
as __irrelevant__ to the velocity of light as the Galilean translation
equations were. Neither transformation
can logically, physically or empirically change an invariant quantity…such as a
constant inertial velocity or the constant transmission velocity of light at *c*. The only change that occurred with the
misapplication of the Lorentz transformation to light was to artificially
change a relative velocity (*c* ± v) into an __absolute__ velocity
(velocity *c* relative to everything, anywhere). (see Chapter 27)

Third, a true mechanically covariant experiment could
only occur where there are different acceleration events with different
magnitudes for their mechanical variables (F, m and a) in two different
inertial frames of reference in order to demonstrate to an observer in each
inertial reference frame that each different acceleration was mechanically
covariant (empirically and physically the same) with respect to Newton’s second
law. In other words, there was a
comparison of two acceleration experiments.
This is what happened empirically in Galileo’s Relativity. There were different acceleration events with
different magnitudes for mechanical variables in port and on the uniformly
moving ship, but empirically their motions appeared to exemplify the same law
of motion (

On the other hand, with Lange’s abstract version of Galileo’s Relativity
there was only one acceleration event at one position in one reference frame,
which was being __translated__ (transferred or shifted) by one-to-one
transformation equations from one inertial reference frame to another. (Chapter 13)
Even Einstein acknowledged this “uniform translatory motion.” (Einstein, *Relativity*, pp. 15 –
16) Therefore, all coordinate points for
one acceleration in one reference frame were merely __translated__ (transferred
or shifted) to the other reference frame.[6] There never was a comparison of two
experiments. There never were different
magnitudes for any mechanical variables that could demonstrate either the
algebraic mechanical covariance of such magnitudes, nor the invariance of a
physical law in each spatially separated inertial reference frame.

For all of the above reasons, neither Lange’s abstract model of Galileo’s Relativity nor the Galilean transformation (translation) equations ever satisfied the major purpose of Galileo’s Relativity: the empirical demonstration that mechanically covariant magnitudes on spatially separated bodies (frames) resulted in the invariance of a physical law. Thus, both Lange’s abstract version of Galileo’s Relativity and the Galilean transformation (translation) equations were completely meaningless and irrelevant with regard to Galileo’s Relativity. (compare Figures 14.1 and 14.2; see Figures 23.1 and 24.1A)

If Lange’s inertial frames of reference and the Galilean transformation
equations were both meaningless with regard to Galileo’s Relativity, why then
did Einstein: 1) adopt both of such
abstract mathematical concepts for his Special Theory, 2) change the Galilean ‘translation’
equations into the equally meaningless Lorentz transformation equations, 3) represent to the world that his entirely
new *ad hoc* concept was merely a generalization of the classical and
empirical concept of Galileo’s Relativity…and
4) misrepresent that he had just theoretically extended the application
of Galileo’s Relativity to electrodynamics and optics? The answer is, because this was the only way
that Einstein could hope to make his Special Theory appear to have an empirical
foundation, and because he needed the inertial reference frames of Galileo’s
Relativity and its related Galilean transformations (with relative velocities
and coordinate measurements) in order to construct his Special Theory.

However, as we shall see in Chapter 24, Einstein completely deviated from Galileo’s Relativity in order to construct his Special Theory. He laboriously used strained logic and false analogies in a failed attempt to rationalize the compatibility of Galileo’s Relativity (in its various forms) with the velocity of light. (see Chapter 24B) But, in the end, it becomes obvious that material bodies and rays of light are such different phenomena that any convention of matter and any version of Galileo’s Relativity are completely irrelevant to the phenomena of light. Again, the two concepts (matter and light) can never be reconciled.

**C. Misapplications of the concepts of matter to
the phenomena of light only served to confuse Einstein and to contribute to his
‘difficulties.’**

The ‘difficulties’ with the velocity of light that the scientific community had created for itself by 1905 was not just one paradox, but rather an entire family of paradoxes. Apparently, it has never been fully realized that a primary cause of all of these paradoxes was the misapplication of various material concepts and conventions to non-material radiation (light), and/or the misinterpretation of the results of such misapplications. We shall now briefly describe several of these material concepts and conventions and how they were misapplied, misinterpreted and/or strangely not applied.

1.
__The Medium__. In the
classical physics of the late 19^{th} century, every material body was
thought to move through (or relative to) a __material__ medium, such as air,
water, glass, or the fictitious material substance called __ether__ that
theoretically filled all of space. By
convention, every medium had to be ‘material.’ For example, Maxwell
misdescribed the phenomena of light as a disturbance of the hypothetical
material medium of ether, and he theorized that such disturbance transmitted
relative to (or through) this stationary medium of ether at a constant velocity
of *c* (300,000 km/s). (Chapter
6A) It was finally realized and stated
by Michelson (in 1881), and implied by Einstein (in 1905), that the concept of
material ether was an invalid concept—a myth—and that it did not exist.

Nevertheless, it was apparently never explicitly realized nor officially
accepted that empty space took the place of the non-existent material ether as
the __non-material medium__ relative to which the electromagnetic waves of
light transmit at the velocity of *c*, and that Maxwell’s equations should
remain valid in this context. Why? Because most mathematical physicists
apparently cannot conceive of a ‘medium’ that is not material, and their
equations will not work with a constant velocity of something (light) relative
to __nothing__ (empty space).
Therefore, the perfectly valid empirical concept of a light ray
transmitting at the velocity of *c* relative to its medium of empty space
(from a star to Earth) is apparently not mathematically permitted in physics.[7] The author has received many violent
objections from mathematical physicists where he has suggested the concept of
empty space (a vacuum) as the medium for the transmission of light at *c*.[8]

For some unfathomable reason, Einstein and the entire scientific
community has apparently failed to realize that Maxwell’s theory of light
(which is embedded in his equations) asserts that light is transmitted at the
constant velocity of *c* __relative to its medium __of ether and (in
the absence of ether) relative to empty space (a vacuum). Maxwell __specifically__ referred to the
velocity *c* of light relative to the
medium of a __vacuum__. (Maxwell’s
Papers, Vol. I, pp. 579 – 580) Even
Einstein repeatedly refers to the velocity of light as *c* * en vacuo* or in

Instead, they doggedly keep
asserting that Maxwell’s concept of light is __transmitted relative to
material bodies__ that are moving inertially and linearly relative to one
another. No misapplication of a material
concept, and no misinterpretation of a law of physics, is more responsible for
the resulting confusion and distortion of physics that is Special
Relativity…than these described above.

2.
__Ether and Confusing Speeds__.
Material bodies (such as autos, rockets or planets) all move at various
different speeds, velocities, accelerations, or arbitrary motions even through
empty space. Whereas, a light ray
inherently only transmits at the __constant__ rectilinear velocity of *c*
relative to its medium of the vacuum of empty space, as it propagates over
various changing distance/time intervals from one linearly moving material body
to another at various relative velocities of *c* ± v. Apparently, it was difficult or impossible
for the scientific community to realize or reconcile these very different
phenomena.

For example; by convention, the “speed of [a material] object is a __relative
quantity__ depending on the __reference frame__ relative to which it is
measured.” (Rohrlich, p. 52) Whereas, “the speed of light occurs in
Maxwell’s theory…as a number, a __constant__, rather than as a quantity that
depends on the motion of the light wave.”[9] (*Id*.

“Elementary
reasoning according to Newtonian mechanics requires that if the speed of light
is *c* as measured __in__ a particular reference frame then it cannot
also be the same number *c* __relative to__ a different frame.[10] If the source of the light (a lamp, say) is
used as a reference frame then the speed of light should have one value
relative to a source at rest and another value relative to a moving source.[11] But that is not the case according to
Maxwell’s theory.

“How can this be? One seems to be drawn to the conclusion that Maxwell’s theory is valid only relative to one single reference frame!

“Maxwell and
his contemporaries were aware of that.
They pictured light waves as traveling *on* something. Just as water waves move on water and sound
waves move on air, electromagnetic waves move on some medium. __That medium was called ether__. And

Rohrlich
referred to the above paradoxes as “the paradox of the speed of light” and as
“a very serious and very basic conceptual problem…which finally led to the
development of the special theory of relativity.” (*Id*.

At first the scientific community
attempted to determine the motion of the ether.
In order to explain Bradley’s 1728 aberration of starlight experiment,
the ether near the Earth must be stationary.
In order to explain Fizeau’s 1851 experiment with light propagating
through moving water in different directions, the ether must be partially
dragged along by the material moving water.
(Rohrlich, pp. 52 – 54; Chapter 7)
In order to explain the 1887 M & M experiment, the ether must be
fully dragged along by the Earth.
(Rohrlich, p. 54) Because of
these conflicting results, it gradually became obvious to some that the ether
hypothesis was untenable. But this still
left the question: with respect to which
reference frame was Maxwell’s velocity of light at *c* valid? (*Id*., pp. 54
– 55) The correct answer is __no
reference frame__; only the medium of a vacuum.

3. __Frames of Reference__. By convention, every material body with a
different velocity is a frame of reference (system of coordinates). Over many scores of years, countless
different experiments have confirmed that Maxwell’s transmission velocity of light
has a constant velocity of *c* in various different reference frames: on solid ground, in airplanes and sailing
ships, and on rockets to the Moon and to the planets. This fact was misinterpreted to mean that
light has the same velocity of *c* “__relative to the reference frames of
the people who made these observations__.”
(see Rohrlich, p. 55) Rohrlich
then asked the question:

“How can *all*
these experiments agree with a theory that gives the *same* speed of light
[velocity *c*] relative to all these reference frames?” (*Id*.

What could be the answer to this paradox?
The answer is again: the
transmission velocity of a light ray is *c* __relative to its medium__
of empty space (a vacuum), but relative to different linearly moving material
bodies (frames of reference) the light ray propagates over changing
distance/time intervals at various relative velocities. The experimenters who made such observations
were all measuring the constant transmission velocity of a light ray to and fro
over a finite distance/time interval.
They were not measuring the variable velocity of a light ray propagating
relative to their linearly moving material frames. It should become obvious to the reader that
material frames of reference are completely irrelevant to the transmission velocity
of the light ray at *c*. They only confuse the analysis of what is
really occurring. The serious paradox
described above by Rohrlich should have been blamed on the mathematicians and
their rigid material convention of always measuring the speed of anything
“depending upon the [reference] frame relative to which it is measured.” (*Id*., p. 52)

4. __Coordinate Systems__. We have already demonstrated that the
material concept of coordinates is irrelevant to a ray of light, *inter alia*
because light’s position or point of emission in space must always remain
uncertain (see Chapter 22B), and because there is no physical way to apply
coordinates to light nor to its tremendous velocity.

Not only did Einstein state that, “we must refer the process of the
propagation of light…to a rigid reference body (coordinate system)” (Einstein, *Relativity*,
p. 22), which is impossible, but he also stated that we must choose which “body
of reference” (coordinate system) we desire in each “particular case.” (*Id*., p. 60) Because there are infinite numbers of
co-moving reference bodies in the universe which an observer on the Earth can
move relative to (Chapter 10), each observer on Earth must mentally choose from
an infinite number of coordinate systems.
(see Einstein, *Relativity*, pp. 59 – 60) Depending upon which reference body (with a
different unique velocity through space) such observer chooses, the velocity of
a light ray (transmitting at *c*) will
have a different __relative velocity__ with respect to each different
reference body.

Once an observer chooses a system of coordinates with respect to a certain scenario of events that he is measuring or mathematically describing, he may change his mind. Even if the observer changes his mind and mentally chooses a different reference body (coordinate system), he will still observe the same objective scenario of events. (Dingle, 1972, pp. 39 – 40) For the above reasons, Einstein’s mental choice of a body of reference (system of coordinates) with which to describe or measure the propagation of light appears to be completely contrived, impossible and meaningless. The results include total confusion and distortions of such coordinate measurements.[13]

5. __Computation of Velocities__. The simple Newtonian convention for the
computation of two material velocities (described in Chapter 7A) did not appear
to hold when applied to the velocity of light.
In Newtonian mechanics, if a fast body u and a slow body v move in the
same direction, “(in fact it seems to be common sense) that the fast body will
then move with a speed *u – v* relative to the slow body.” (Rohrlich, p. 56) But, continues Rohrlich, when the fast body u
is replaced by a light ray, the motion of the light ray relative to the slow
body cannot be *c* – v, because light is always found in experiments to
move with the same constant velocity of *c*. Therefore, the velocity of the light ray __relative
to__ the slow body must also be *c* and not *c* – v. (*Id*.

“It is as if
the difference between *c* and v were not *c* – v but were equal to *c*. The law for adding or subtracting speeds when
the speed of light is involved is somehow not ordinary addition and
subtraction.” (*Id*.

What could be the answer to this paradox?

This confusion by Rohrlich perfectly
describes the confusion for the entire scientific community, which still
remains ubiquitous in the 21^{st} century. The answer to such paradox is as
follows. Such experiments (described by
Rohrlich) were all measuring the constant transmission velocity of a light ray
at *c* over a finite distance/time
interval relative to its medium of air or a vacuum. They were not measuring the varying
propagation velocity of a light ray over changing distance/time intervals (*c*t
± vt) relative to a material body moving __linearly__ toward or away from
the light ray at v. The motion (propagation)
of the light ray u __relative to the slow material body__ v was the same as
that which resulted when the Galilean transformations were misapplied to the constant
transmission velocity of light with respect to different material reference
frames moving linearly relative to the light ray: *c* ±
v.

Again, the answer to such paradox is the difference between the concepts of constant transmission velocity of light relative to its medium of a vacuum and the variable relative velocity of propagation of a light ray relative to linearly moving bodies . If the mathematical physicists had not been so constrained by their rigid material conventions and had not tried to analyze the situation solely with material concepts and mathematics, they might have been able to step back and logically realize and understand what was actually happening.

6.
__Inertial Motion & Transformation Equations__. Newton’s second law of motion (F = ma)
remained empirically and algebraically invariant on all __inertial__ frames
of reference, regardless of the changed covariant magnitudes of variables F, m
and a. In other words: “one inertial reference frame is as good as
another” with respect to mechanics.
(Rohrlich, p. 57) The scientific
community assumed that Maxwell’s law for the constant velocity of light at *c*
*en vacuo*, which had been confirmed by many experiments, should likewise
remain algebraically invariant at *c* with respect to all __inertial__
reference frames.

In order to achieve this mathematical result, they misapplied the
material and mechanics concepts of Galileo’s Relativity and the Galilean
transformation equations to the constant velocity of light at *c* and were baffled by the paradoxical
mathematical results: *c* – v and *c*
+ v. The equations of mechanics (i.e. F
= ma) were empirically Galilean invariant, but Maxwell’s equations for light at
velocity *c* were not. What was
even more baffling was that both

The answer with respect to Galileo’s
Relativity is that all inertial velocities physically simulate the same state
of motion…an illusion of rest for all mechanical experiments. So, all inertial mechanics experiments share
an identical sensory and empirical experience and have identical mechanical
results no matter what the uniform velocity.
However, such sensory and physical illusion of rest has __no relevance __for
non-physical electromagnetic radiation and non-material light waves, or for their
transmission velocity of *c*. On
the other hand, the constant velocity of c in one inertial reference frame is
very naturally a relative velocity (*c* ± v) in another inertial reference
frame.

The answer with respect to the Galilean transformation equations is that
they merely __translate__ the same mechanics experiment, its mechanical magnitudes,
and its algebraic form from one inertial frame of reference to another, without
any change in algebraic form or any demonstration of covariance. (see Chapter 14) But when the constant invariant transmission
velocity of light at *c* in one inertial reference frame is translated to
an inertial frame moving linearly and uniformly at velocity v relative to the
first reference frame, there is an automatic addition or subtraction of like
quantities (uniform rectilinear velocities), and the automatic mathematical
result is a __relative velocity__ of *c*
± v. The same mathematical result would
have occurred if the constant velocity v_{1} of one inertial frame was
translated (or compared) to the other inertial frame moving away at v_{2}…that
is, the result would be a relative velocity:
v_{1} – v_{2} = v_{3}. (Chapter 14)

Two conclusions should become patently obvious to the reader: 1) one cannot meaningfully transform (translate) a constant velocity (an invariant quantity) from one reference frame to another; and 2) the material mathematical concept of transformation equations (in any form) are irrelevant, meaningless and distorting with respect to the constant transmission velocity of electromagnetic radiation (light).

7.
__Misinterpretation of Constant Velocities__. Because the magnitudes of material phenomena
(i.e. force, mass, acceleration, length, temperature, pressure, etc.) were
empirically independent of their constant rectilinear velocities, the
scientific community (including Einstein) apparently assumed that the velocity
of light should also be independent of constant rectilinear velocities. This conclusion appeared to be logical
because empirically the velocity of light was independent of the velocity of
its source body. (see Chapter 22A) However, this assumption is not a correct
conclusion for the reasons set forth in the preceding Section 6 of this chapter,
and for the reasons set forth in Figure 23.2B.

Why are the magnitudes of most material phenomena (such as force, mass, acceleration, length, mechanics, temperature, chemical energy, and pressure) completely independent of the inertial (constant uniform rectilinear) velocities of material bodies? One reason is because there is absolutely no logical, physical or other reason why an inertial motion or a constant velocity should change the magnitudes of such material phenomena. (see Figure 23.2A) There is also no empirical evidence for such theoretical velocity dependence. Another reason is because a uniform velocity and such material phenomena are completely different types of phenomena, like apples and elephants, or sounds and colors. How can one add an apple and an elephant, or loud and yellow? How can one subtract a temperature or a mass from a velocity?

On
the other hand, all constant uniform rectilinear velocities are exactly the
same type of phenomena. Therefore, any
two different constant rectilinear velocities can be added or subtracted in
order to compute a third __relative__ velocity, whether or not we are
dealing with the constant uniform velocity of a material body or the constant
uniform velocity of a ray of EM radiation (i.e. light). (see Figure 23.2B) This is why the constant transmission
velocity of a light ray at *c* propagating relative to the constant
inertial velocity of a linearly moving body results in a third relative
velocity (*c* ± v) for both the body
and the light ray. Thus, the constant
propagation velocity of such light ray is not independent of such constant
inertial velocity.

8.
__The Electromagnetic Wave Test for Absolute Motion__. The final paradox that confronted the
scientific community was perhaps the most baffling of all. If the velocity of light relative to a moving
body was in fact *c* – v or *c* + v, then Michelson’s interference
experiment for a light ray at *c* (relative to the velocity of the Earth
at v) should disclose the magnitude of the Earth’s velocity (change of
position) relative to the stationary ether or through empty space, as an
increased distance/time interval by means of an interference (light wave phase)
fringe shift. (Chapter 9) But Michelson’s experiment demonstrated that
the velocity of light remained a constant *c* in all directions, because
no fringe shift was detected. This
paradoxical null result, and many others like it to various orders of
precision, finally caused the crisis in physics that Einstein described in
Chapter 19. Such paradoxical null result
needed an explanation, any explanation, even an explanation of desperation like
Special Relativity.[14]

_______________ _{o} _______________

The only way to eliminate all of the
above paradoxes is to properly analyze and explain the phenomenon of light and
its relationships to material bodies.
This is what we have attempted to do in Chapters 19, 20, 21, 22 and 23,
and will continue to do in Chapter 24 and beyond. Einstein’s first postulate (his ‘principle of
relativity’), his second postulate with respect to the absolute velocity of
light at *c*, his Lorentz transformations, his other relativistic
concepts, and his *ad hoc *Special Theory as a whole, are not the
answers. (see Chapters 24 through 29)

[1] By way of example, the common inertial motion of a relatively stationary Saturn V rocket and the Earth’s inertial motion through space remain common and lateral during the perpendicular motion of the Saturn V rocket towards the Moon after blastoff. Whereas, light propagated perpendicularly from the Earth’s surface experiences no such common lateral inertia or lateral inertial motion during its propagation into space.

[2] The idea of ‘gravity’ is also only a material concept.

[3] We shall later discuss and scrutinize Einstein’s conjecture (in his General Theory of Relativity) that a gravitational field curves the path of a light ray. (see Chapter 40, and a treatise to follow this one)

[4] If it
somehow implied to the observer that the constant transmission velocity of the
light ray at *c* would be the same in both inertial frames, then there
would be no reason for the Lorentz transformations.

[5] Actually, the only relevant purposes of the Galilean transformations with respect to Galileo’s Relativity were to mathematically demonstrate that there was an acceleration, and to demonstrate that the two inertial reference frames were spatially separated by a distance (vt). (see Chapter 14) The one-to-one translation of the same algebraic form of the acceleration (i.e. F = ma) from one position to another served no purpose in Galileo’s Relativity.

[6] The
Galilean transformation equations should have been called the Galilean ‘__translation__’
equations (or __transferring__ equations) when they were given a name in
1909.

[7] Radar
beams, radio beams and laser beams empirically transmit through the medium of
empty space from Earth to Mars, to Saturn and back at velocity *c*, and
rockets move through empty space from Earth to the Moon, to Mars, to Neptune,
and farther. So, why not light?

[8] The mathematical term ‘medium’ needs to be universally redefined in order to include the above concept.

[9] This is
not even a correct statement. The speed
of light occurs as a constant number *c*
(300,000 km/s), which quantity __does depend__ on the transmission of the
light wave through a vacuum.

[10] The
answer to this paradox is: 1) the
constant or absolute __transmission__ velocity of a light ray at *c*
relative to its medium of air on the Earth is measured to and fro between a
relatively stationary terrestrial light source and a relatively stationary
mirror over a __finite__ distance/time interval, whereas 2) the velocity of such light ray __propagating__
relative to a linearly moving rocket on its way to Saturn is measured over a
changing distance/time interval (*c*t ± vt) at a relative velocity of *c*
± v. (see Chapter 21) The difference is between the concepts of the
__constant__ transmission velocity of light *relative to its medium* and a __variable__ propagation velocity
of light relative to an inertial frame.

[11] The
answer to this paradox is that the instant a light ray comes into existence at
a material light source *en vacuo*, it instantaneously, constantly and
inherently __transmits__ away from such light source at velocity *c*
relative to its medium of empty space, regardless of the motion of the material
light source. (Chapter 22) Such light ray transmits at velocity *c*
relative to its medium of a vacuum as it also propagates at *c* ± v
relative to linearly moving bodies.
Again, the difference is between the concepts of the __constant__
transmission velocity of light relative to its medium and the relative variable
velocity of propagation of light with respect to a linearly moving inertial
frame.

[12] The reference to stationary ether (empty space) as both a medium and as a reference frame brought with it vestiges of absolute space, and resulted in all kinds of confusion. How can the velocity of light be measured relative to a reference frame that is theoretically everywhere?

[13] See Chapters 25, 26, 27, and especially 28 to realize and understand how the material concepts of frames of reference, coordinates and clock time were misapplied by Einstein to light, and why they completely distorted all of physics.

[14] However, we now know the real explanations for the M & M null results (Chapters 10 – 12), and they have nothing to do with contractions of matter or Special Relativity.